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Audio-based Features: Vocal Tract Variables (TVs)
• An Acoustic-to-Articulatory speech inversion system [4] is used to extract the TVs. 
• An Aperiodicity, Periodicity, Pitch (APP) detector [5] is used to extract source features to be used as proxy 

to the Glottis TV.

Coordination Features
• The FAUs and TVs are used to calculate FAU-based and TV-based coordination features using a channel-

delay correlation mechanism [6].

Multimodal representation learning framework

Multi-Task Learning (MTL) Framework for Schizophrenia Assessment

Results

Acoustic and Articulatory Feature Fusion
• Previous works on speech-based mental health 

assessments have only either used acoustic features 
or articulatory features as inputs. 

• In our latest work [7], we have developed a speech-
based schizophrenia assessment system that fuses 
self-supervised speech features (WavLM) and TV-
based coordination features and provides a 
performance improvement.

Conclusion and Future Work
• Combining the MTL paradigm with TV and FAU-based 

multimodal representations enhances the 
performance in symptom-based classification.

• Our model with the MTL paradigm provides improved 
performance in symptom severity estimation when 
compared with a standalone regression model. 

• Data scarcity limits multimodal representation 
learning to a single dataset. Therefore, we plan to 
integrate diverse data sources for more generalizable 
representation learning models.

• The fusion of articulatory and acoustic features 
provides a performance improvement in speech-only 
settings.

• We plan to expand our work to assess individual 
symptom severity across the schizophrenia spectrum.
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Introduction

▪ The varying symptoms of schizophrenia, like delusions, 
hallucinations, diminished emotional expression, and 
poverty of speech, affect speech production.

▪ Our work focuses on utilizing these changes in speech 
for the detection of schizophrenia and assessment of 
symptom severity.

▪ The complex symptom nature of schizophrenia also 
affects the linguistic nature of speech and the changes 
in facial expressions. 

▪ Combining text-based and video-based features with 
speech-based features has proven to be beneficial in 
both the detection and assessment of schizophrenia 
symptoms.

Dataset

▪ The dataset used in this study was collected at the 
School of Medicine, University of Maryland contains 
audio and video recordings of interview sessions.

Feature Extraction

Video-based Features: Facial Action Units (FAUs)
• The facial action coding system is a comprehensive 

anatomically based system that tracks facial 
movements and converts FAUs. 

• Openface 2.0 toolkit was used to extract these FAUs.

Text-based Features

• Glove Embeddings and BERT embeddings were used 
as text-based features.

• Glove embeddings produce a fixed-size vector 
representation for each word in the text.

• BERT embeddings produce both word-level and 
sentence-level vector representations.

No.of Subjects 39

No.of Sessions 140

Hours of Speech 34.45 hours

Symptoms based subclasses Healthy control, Positive-
Schizophrenia, Mixed- 
Schizophrenia

BPRS-based severity score 
range

19-62
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Modalities Model Classification Severity Estimation

Acc. F1 AUC_ROC MAE

A,V CNN-LSTM model with Attention [1] 52.17 49.33 68.53 -

A, V, T CNN-LSTM model with Attention [1] 56.52 51.62 74.21 -

A,V CNN-LSTM with  mGMU [2] 60.87 60.28 77.35 -

A,V,T CNN-LSTM with  mGMU [2] 65.22 65.47 82.14 -

A,V MM-VQ-VAE representations based classification [3] 54.96 71.04 57.62 -

A,V MM-VQ-VAE representations based regression [3] - - - 8.81

A,V MM-VQ-VAE representations based MTL model [3] 75.00 76.41 91.52 7.19

CNN based 
VQ-VAE 
Encoder

CNN based 
VQ-VAE 
Decoder

TV based FVTC

CNN based 
VQ-VAE 
Encoder

CNN based 
VQ-VAE 
Decoder

FAU based FVTC

Fusion 
Block

Fused Audio-
Visual 

Representation

CNN based 
VQ-VAE 
Encoder

CNN based 
VQ-VAE 
Decoder

TV based FVTC

CNN based 
VQ-VAE 
Encoder

CNN based 
VQ-VAE 
Decoder

FAU based FVTC

Fusion 
Block

Fused Audio-
Visual 

Representation

CNN-based 
VQ-VAE 
Encoder

CNN-based 
VQ-VAE 
Encoder

BLOCK
Fusion

Codebook

CNN-based 
VQ-VAE 
Decoder

CNN-based 
VQ-VAE 
Decoder

CNN based 
VQ-VAE 
Encoder

CNN based 
VQ-VAE 
Decoder

TV based FVTC

CNN based 
VQ-VAE 
Encoder

CNN based 
VQ-VAE 
Decoder

FAU based FVTC

Fusion 
Block

Fused Audio-
Visual 

Representation

CNN based 
VQ-VAE 
Encoder

CNN based 
VQ-VAE 
Decoder

TV based FVTC

CNN based 
VQ-VAE 
Encoder

CNN based 
VQ-VAE 
Decoder

FAU based FVTC

Fusion 
Block

Fused Audio-
Visual 

Representation

Multimodal 
latent 

representation

Quantized
multimodal 

latent 
representation

TV-based FVTC

FAU-based FVTC

Reconstructed 
TV-based FVTC

Reconstructed 
FAU-based FVTC


	Slide 1

